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STABILITY OF A PLANE CRYSTALLIZATION FRONT MOVING AT 

CONSTANT VELOCITY 

L. G. Badratinova UDC 532.78:536.421.4 

i. In an x, y, z coordinate system coupled to a plane unperturbed front (the x axis 
is directed into the melt and the y, z axes are along the interfacial surface), the crystal- 
lization process of a dilute binary alloy is described by the equations 

for d~" > /(!1. ~, t) f)T,/Ot ! v ~ . v T  1 .:  7~Al'~, 
3c1'0I -{- v i - v c i  :-: DAel. V'Vi : O, 

& ' / b Z q - i v ~ . V ) V ,  : v A v j - - V !  ~ ? , q - g ,  g : : : ( - - g ,  0, O); 

(i.i) 

for x . ~ f / ( y , z , ~ )  OT..~Ot-- F,zfdF=Ox)=- z zAT 2 

with local phase equilibrium conditions [i] 

(1.2) 

x = / ( y ,  z, t) Tx "= T~ = mc 1-F To-F To?K, ( 1 . 3 )  

no  t a n g e n t i a l  c o m p o n e n t  o f  t h e  m e l t  v e l o c i t y  o n  t h e  f r o n t ,  a n d c o n t i n u i t y  o f  t h e  e n e r g y  and  
m a s s  f l u x e s  [2]  o f  b o t h  m e l t  c o m p o n e n t s  d u r i n g  p a s s a g e  t h r o u g h  t h e  i n t e r f a c e  x = f ( y ,  z ,  t ) :  

(• T~ -- x l v T 1 ) n  = -- plA(vl  - -  U)a,  
V1.1: = O, pl(Vl - -  U)n = p2(v= - -  U)n,  ( 1 . 4 )  

Oplp[1Vcln  = (l  - -  k) c 1 (-v 2 - -  U)n .  

Here vl, p, and ci are the melt velocity, pressure, and impurity concentration (mea- 
sured in weight fractions), Tj (j = i, 2) are the temperatures of the medium~ The subscript 
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1 characterizes the liquid phase and the subscript 2 the solid. The density of the medium 
and the thermal diffusivities and conductivities are denoted by pj, Xj, • andD are the 
kinematic viscosity and impurity diffusion coefficients, and V= = con~t is the crystal veloc- 
ity. The dependence of the crystallization temperature on the impurity concentration at the 
front (m is the slope of the liquidus line) as well as on the curvature K of the interfacial 
surface is taken into account in condition (1.3); y is the surface tension coefficient~ To 
is the melting point on the plane front in the absence of impurities, A is the latent heat 
of crystallization, k is the equilibrium coefficient of impurity distribution, and N T, and U 
are the normal and tangential vectors to the phase transition boundary and the displacement 
velocity of this boundary. 

It is assumed that the melt occupies the whole half-space x > f(y, z, t), and a given 
temperature is maintained in the solid medium at a certain fixed distance H from the unper- 
turbed front. The following are appended to conditions (1.3) and (1.4): 

for x - -  oo ct ~= Co~, I '  1 = ) ' ~ ,  v~ ---= ( - -  V~, O, 0), 
for x = - -  H Te = Te0 [ t  - -  e x p ( - - -  V.,H/;<~)I -~ T O -[- r a c J k ,  

(1.5) 

where V~ = p~Vu/pl; T~o = (cv~T~ + A)/cvu ; T~o = T=-- To -- mc~/k; cvj are the specific heats 
of the media for constant volume. 

2. Problem (1.1)-(1.5) has a one-dimensional stationary solution 

/~ -=- O, v~ := ( - -  V~, O, 0), c~ = c~ + c~ (k -~  - -  1) exp ( - -  VlX/D),  ( 2 .  l )  

pO ==- -p~gx  ~ - c o n s t ,  T~ = T ~ o [ l - - e x p ( - - V ~ x / % ~ ) ]  @ T ~ @  mc~/k .  

For simplicity, the stability is investigated in the plane case. (All the results re- 
main valid even for three-dimensional flow.) We linearize the system (1.1)-(1.5) in the 
neighborhood of the solution (2.1) and we introduce the stream function ~(x, y, t), by set- 
ting v: = (~/~y, --~/~X) o We eliminate the pressure p and reduce the system to dimen- 
sionless form by selecting the following units of measurement as independent: the length 
x~/V~, the time x:/V~, the temperature A/Cv~ , and the concentration c~/k. Let us separate 
the time t and the variable y by setting 

{/(y,  z-), c~(x, ,j, O, rs(x, ~, t), ~p,(x, ~j, t)} = {ia,  i~(z), iOj(x),  *l~(x)} ~::p(~,~t ~ i(o~/) (t :: ~, 2). 

Consequently~ we obtain a system of ordinary differential equations for the amplitudes of 
the normal perturbations 

i 
for a i >  0 (L  - -  LI) 01 -@ 01 ~ o)Gil ~ exp  ( - -  x ) ,  

( L  - -  . u D , )  c -i- D , e '  -~ oJD,G~) e x p  ( - -  D , x ) ,  ( 2 . 2 )  

L [ (L  - -  u P r , ) ' q ~  -- '  P r , l b ' ]  =: 0: 

t 
for x<0 (L -- ~Z,) 0., ~p.z.0~=0; 

with the boundary conditions 

for X = 0 ~ '  -= 0,  ( o ,  . . . .  g.lla, 

01 @ (7~a : O, -~- G,,a = mo(C -~ G~a) - -  ?o(o~a, 

--1 t D .  c - -  l:Gca -.~- ( t  - -  k )  c ~ , u p ,  1 (k  - -  1) a; 

for x === oo 0 t == c == 0, "q~ = ~ [ "  = 0;  

for .c . . . .  h 0,, :-= O. 

(2.3) 

(2.4) 

Here L = (d~/dxa), - 2, the prime denotes differentiation with respect to x, pr, = X/~ 
the reciprocal Prandtl number, D, = • X, = XI/X=; ~,= zJz~; P, = ~/P2 ~ = is 

(P= -- P:)/Pl; the quantities Gc(k-- I)D,, G: = c v T1olfi and G2 = X,(l + G:) are dimension- 
less gradients of the impurity concentration and o~ the ~emperatures in the melt and in the 
crystal, and h = HV~/x: ; mo = mc=cv1/kA; Yo = yTocv:VI/xIA. 
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For G~ < 0 the temperature T~ in the melt is below the temperature T~ + mc~/k on the 
crystallization front. We shall allow the possibility of fluid supercooling (see [3, 4]) 
and consider the problem for G~ 9-- I, If G: = -- i, then the gradient G= = 0 and the tem- 
perature in the crystal is Tao = To + mc=/k. 

If all the eigenvalues U of the problem (2.2)-(2.4) have a negative real part, then 
solution (2.1) is stable. If at least one perturbation is in the spectrum for which Re ~ > 0, 
then solution (2.1) is unstable relative to this perturbation. 

3. Let D, = 0 (G c = 0), ~, = i (thermal problem). In this case system (2.2)-(2.4) has 
the nontrivial solution 

:= c -=- 0, 0~ . . . .  (G~ 4- yoo~)a exp ( ~  Ix) (a ~-- 0), 

0,, = - -  (Ge + ?o(O ~) a exp ( - -  Z,x/2) eh [r (x k h)] [sit (rh)l-~, 

which exists for all values of ~ satisfying the dispersion relationship 

~t = - -  (t  + g~) [r c th  (rh) + Z, /21 - -  Ot (l  - -  1) - -  ?0• = [r c th  (rh) - -  Z , / 2  + • 

The quantity I is the root of the equation 

1 2 ~ l - - ~ - - ~  = O, 

f o r  w h i c h  t h e  c o n d i t i o n  o f  b o u n d e d n e s s  o f  t h e  p e r t u r b a t i o n s  i s  s a t i s f i e d  as  x § ~,  i . e . ,  
Re 1 > 0. If Qm denotes the function Qm(n, g) = r + m 2 + n~, Re[Qm(n, ~)] > 0, then 
1 = 1/2 + Qm(l, ~), r = Qm(x,,>). 

It is shown in [5] that for every complex number N for which Re N > 0, the following 
equality is valid 

(3.1) 

(3.2) 

sgn[ Im (N)] = sgn [Ira (N2)] --=- sgn[ Im (N cth N)]. (3.3) 

Let us agree to use the notation Re N = N,, Ira N = Na for every complex quantity N. 
Using the same notation for ~ and Z, we can reduce (3.2) to two equivalents: 

l~ - -  l~ - -  L - -  0 ) 2 -  ,th := O, 2l~!.~ - -  l 2 - -  .% ~-- 0. ( 3 . 4 )  

A p p l y i n g  ( 3 . 3 )  t o  t h e  complex  q u a n t i t i e s  1 -- 1 / 2 ,  r h  ( l~  > 1 / 2 ,  r ,  > 0) we o b t a i n  

sgn l, =: sgn {hn [ ( / - -  1/2)2]} == sgn ,tt=, ( 3 . 5 )  

sgn {[m [r eth (rh)]} == sgn [Ira (r'-')l = sgn u,,. 

Furthermore, if ~: ~ -- m s, then the following holds 

sgn(~t~-- 1,~)== s g n L  a = sgn~te, ( 3 . 6 )  

Indeed, if l= = 0, then ~2 = 0 by virtue of (3.5) and the validity of (3.6) is evident. For 
la~ 0 it follows from (3.4) that (Va -- l~) = sgn [(11 -- l)l=], while for ~t ~ -- ~a the quan- 

tity is iI > i. 

Let us examine the case G:~ 0. Using (3.5) and comparing signs of the imaginary parts 
on the right and left sides of (3.1), we obtain the equality sgn ~= = -- sgn V=, from which it 
follows that all the solutions of (3.1) are real. If ~ = O, then l~l, and the sign on the 
right side of (3.1) is opposite to the sign on the left side. This means that each solution 

of (3.1) is negative. 

Let -- I~GI < 0, ~I~ 0. Converting the imaginary part of (3.1) to 

~ - -  l~ = -- ( t  + G~ + %~x~ ~) I m  [r c th  (rh)] -- (t  + G~ q- % o  ~) 12 

and using (3.5), (3.6) we obtain ~2 = 0. 
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Assertion i is proved. For G~O all the eigenvalues ~ governed by (3.1) are real and 
negative, and for -- i ~G~ < 0 the imaginary part ~= = 0 for every solution ~ for which Re. 
~ ~0. It hence follows that within the framework of the thermal problem the crystalliza- 
tion front is stable for G~0, while for -- I~ G~ < 0 the instability can be associated 
just with monotonic perturbations. 

Setting ~ = 0 in (3.1), we obtain the critical dependence 

.2 --I 
G~ == G~ (r "~ -~ r~ cth (roh) ~- %,/2 -~ yor •  [r o cth (rob) - -  Z,/2 ~- • 

r o cth (roh,) + %,/2 + l o -  1 "" ( 3 . 7 )  

governing the stability boundary with respect to perturbations with wave number ~. Here 

ro = ~ ,  lo = 1/2 + /1/4 + ~2 .  

For Yo = 0 the value is G~(0) = --i. As ~= grows, the function G~ increases monoton- 
ically, and for ~= § ~ its value tends to -- 1/2. This means that the crystallization front 
is stable for Yo = 0 if G~ > -- 1/2 For G~ = --1/2 shortwave perturbations are most danger- 
ous. 

4. For D, = O, ~, =/=i, we obtain a stability problem for the crystallization front of 
a pure melt (c ~ 0, ~/~0). The dispersion equation for this problem can be reduced to the 
form 

P,~9 -= - -  (t ~.-G~) [R c th  ( R h )  -'7 p ,X, /2 ]  - -  ?o• ~ [R c th  ( R h )  - -  p , ~ , / 2  -~ •  --  G~ (1 - -  I -'7 eX), ( 4 . 1 )  

where X = v(~ + q + l) (~ + l) -I (q + /)-I; q = 0.5 Pr, a + Q~(Pr,, ~) is the root of the 
equation 

q2(q__ ~)pr._~2 = 0, 

and R = Q~(P,X*, p~1~). 

If the quantities q, /(qx, l, > 0) and ~ satisfy (3.2) and (4.2), then 

(4.2) 

sgn [hn  (~J)] : sgn [Ira (~tF)] = sgn [Ira ( ~ ]  = sgn [Ira (!Hq)] : sgn ~ 

We p r e s e n t  t h e  p r o o f  o f  t h e  e q u a l i t y  

(4.3) 

From (3.2) and  

sgn [ Im (~lq)] - sgn ~z. 

( 4 . 2 )  we o b t a i n  

Ira (~/q) = I l[ 2 q2 q- ~ Im  (lq) i - I  I I 2 Im (lq), 

P r ,  Im  (~lq) = P r ,  I q 12 L ~- (o 2 Im (lq) --- I q 12 Ira (/q). 

(4.4) 

(4.5) 

If l= = 0, then ~= = q= = 0 and (4.4) is satisfied. If l=~= 0, then sgn [Im (/q-) = sgn 
[/2(q, -- llq2/l=)]. In each of equalities (4.5) the sign of the first two components agrees 
with the sign of ~2. If for certain ~, Pr,, w the inequality qx ~llq=/12 is satisfied, 
then [Im(/q--)] = sgn ~= and the equality (4.4) follows from the first equation in (4.5), other- 
wise it follows from the second equation. 

By using (4.3) it can be proved that if the quantities q, 1 (q~, l: > O) and ~ satisfy 
(3.2) and (4.2) then 

sgn Jim (X)] = sgn .a 2. ( 4 . 6 )  

Moreover, if ~i > 0, then Re X > 0. 

The assertion 2 is valid. For GI ~ 0, e > 0 all the eigenvalues ~ satisfying (4.1) are 
real and negative, while for G~ ~ 0, e < 0 each solution ~ has a negative real part. In 
the case -i/2~ G: < 0, e >--1/2 Im ~ = 0 for all the eigenvalues for which Re ~ 0. 

For G~ ~0, e > 0 the proof (taking (4.6) into account) is analogous to the proof of 
assertion 1 for Gx ~ 0. 
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If G,~ 0, ~ < 0, then (4.1) has no solutions with nonnegative real part since for each 
with Re ~ 0 the signs of the real parts of the right and left sides of this equation are 

opposite. For the proof it is necessary to set e = p,: -- i in (4.1), use (3.2) to convert 
the expression ~ -- I -- X to the form YuIm + ~l-=lq + ZI -= where 

r == (Z - -  l)]q[~-co + (l - -  ~)Tlql -~ + & ( 7 / f i T )  + ( 2 [ / - -  t /21 ~" -+ t/2)q + ( l l  - -  I I  ~ -F t )  (2-- -  t ) q  -4- 

- -  o3[(l -- i)ql -t- llq q- Z] ~] -+ o)~[lq .+ F q- I't + /[2], 

and show that the real part of each component in the expression Y is nonnegative for ~x ~0. 

Let-- i/2 ~G~ < 0. For -- 1/2 < c < 0 the imaginary part in (4.1) can be represented 
in the form 

, ~- ( 1 "  G~ -I- ~o•  -!o)2) I m  [itl c t h  ( R h ) l  - -  eG, X 2 (8 + i ; '2)  ~ =: - -  (p~ - -  L)/2 -- (Gx -k t / 2 )  l , - -  ~o,~O l~ - -  ( 4 . 7 )  

a n d  i t  c a n  b e  s h o w n  b y  u s i n g  ( 3 . 3 ) ,  ( 3 . 6 )  a n d  ( 4 . 6 )  t h a t  f o r  e a c h  ta w i t h  Re  la --> 0 t h e  s i g n s  
in the left and right sides of (4.7) are opposite. In the case ~ > 0 for the proof of asser- 
tion 2 it is necessary to convert the imaginary part of (4.1) to the form 

: _ , ~ _ . , _ , 2 _ ( t  'i- Gt -i- Y.,• co-) I m  [R c t h  (Rh)]  8 (tt~ X212) - -  s (G~ -:- 112) X., ~t,/2 (~.to - -  lz)/2 (G~ i- 1./2) 1., "to o) l e -*  "~ - -  - -  

and to show that sgn (v2 -- X=/2) = sgn Vi. 

For ~ = 0 we obtain the critical dependence G~(u 2) from (4.1). This dependence is de- 
termined by (3.7) if the X, there is replaced by ~,X~. The crystallization front is stable 
relative to monotonic perturbations if GI > max G1(u ). If To = O, then max G~ (2) = G~. 
(~) = -- 1/2 while according to assertion 2 for G~ > -- 1/2 the oscillatory instability is 
impossible. Therefore, for Yo = 0 the stability criterion agrees with the criterion for the 
thermal problem. 

5. In the case p, = i, D,~0 the velocity field does not experience any perturbations 
(~ z 0), and we arrive at a thermodiffusion formulation of the problem. For p, = i and h § 

the solution of the spectral problem (2.2)-(2.4) reduces to the following equation for the 
eigenvalues ~: 

= - -  G, ( l  - -  t )  - -  •  2 (s ~- Z , )  - -  ?o ~ (x:*s -~ l) + moGe (• + l) - moGr , ( 5 . 1 )  

w h e r e  s = - X , / 2  + Q m ( x , ,  ~ )  a n d  T = - - D , / 2  + Q m ( D , ,  ~ )  a r e  t h e  r o o t s  o f  t h e  e q u a t i o n s  

s ~ [~- %,s --. co" - -  7.,~1. =- 0, %~- -~- D,% - -  o 2 - -  D , j [  --= 0; ( 5 . 2 )  

z =~: ( •  -i- ~) O~ "- leD.:..)(.~ + J~D,)-k (5,  3) 

For a dilute binary alloy, m(k-- i) > 0 follows from the Van't-Hoff equation (see [i]). 
Therefore moG c > 0. Let us eliminate negative values of G, from consideration. For G: ~ 0 
concentration supercooling [i, 6] characterized by the gradients G, < moG c can, however, hold 
in the melt. 

Let F(:) and F(2) denote the functions 

F(,) (o;", k, O,,  m~G~) == moG~To (T~ +. k D , )  -~,  

r " �9 , . - - ] ~  F~,~(,o~, z . ,  • a,) ..... [r t )~-  x;~G.,C,~o ~-. ?:,)] (~, ,~o-+ fo)-~, ( 5 . 4 )  

where to = -- D,12 + /D~/4 + ~; so = -- • + /X~I4 + z. 

By using (5.1), the stability condition can be found relative to the monotonic perturba- 
tions. Using the notation (5.4), we write this condition in the form 

< [) (for all  w): stabili ty 

F<t ) - -  F(,~ ..... Y~176 > 0 (for all  ca): instabil i ty ( 5 . 5 )  
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If the quantities ~, ~, s and ~ (~z, ~,, s~ > O) satisfy (3.2) and (5.2), while Z is 
defined by (5.3), the the following equality is valid 

Let u = O. 

sgn Z 2 = sgn s,, --=- sgn ,u.:. 

We p r o v e  a s s e r t i o n  3. I f  

•  < t,  rnoG c < •  (t  - -  •  

(5.6) 

(5.7) 

o r  

•  moG~<l, ( 5 . 8 )  

then the stability boundary is determined by the value ~ = 0 (stability of the process is 
determined by conditions (5.5)), 

Let conditions (5.7) be satisfied. The assertion follows from the results of a sequen- 
tial examination of certain cases: a) G:~moGc, Gi~moG c. From (5.1) we find 

~2 : - -  (GI  - -  ~ o G e )  l 2 - -  z ; 1  (~2  - - / ? ~ o a c )  s2 - -  ~O ~2 (~*]$2  @ 12) - -  ' ~o ( ; cZ2  �9 (5 .  9) 

T a k i n g  a c c o u n t  o f  ( 3 , 5 )  and  ( 5 . 6 ) ,  t h e r e  h e n c e  f o l l o w s  t h a t  t h e  e i g e n v a l u e s  v a r e  r e a l ;  b )  
G2 > m o G c ~ G x .  We c o n v e r t  t h e  i m a g i n a r y  p a r t  o f  ( 5 . 1 )  t o  t h e  fo rm 

~t~ (t + G~ - m0ac) = - -  (,n0Gc - - a 0  (!~ - -  12) - -  •  (G: - , n 0 @  s~ .... 70~) ~ (• + l~) - m 0 a J ~ .  ( 5 .  ! 0 )  

S i n c e  G2 > moG c and  n , ~ l ,  t h e n  1 + Ga --  moG c > 0.  T a k i n g  a c c o u n t  o f  ( 3 . 6 )  and  ( 5 . 6 )  t h e  
r e a l n e s s  o f  a l l  t h e  e i g e n v a l u e s  v f o r  w h i c h  ~ , ~ - -  a f o l l o w s  f rom ( 5 . 1 0 ) ;  c) G~ < moGc, G2 < 
moG c .  I n  t h i s  c a s e  moG c > (G~ + •  + 1) - ~ ,  and  t h e  i n s t a b i l i t y  a s  w § ~ f o l l o w s  
f rom ( 5 . 5 ) ;  d )  G, > m o G c ~ G i .  T h e s e  i n e q u a l i t i e s  a r e  i n c o m p a t i b l e  i f  moG c < •  - ~ .  

Upon c o m p l i a n c e  w i t h  c o n d i t i o n s  ( 5 . 8 ) ,  i t  i s  n e c e s s a r y  t o  r e e x a m i n e  c a s e s  "b"  and  " d "  
t o  p r o v e  t h e  a s s e r t i o n .  I n  c a s e  " b "  i t  i s  n e c e s s a r y  t o  t r a n s p o s e  t h e  e x p r e s s i o n  moGc;o t o  
t h e  l e f t  s i d e  i n  ( 5 . 9 )  and  t o  n o t e  t h a t  (V2 - - m o G c Z i )  = s g n  u i ,  i f  V x ~ - -  2 and moG c < 1. 
A n a l o g o u s l y ,  i n  t h e  c a s e  "d"  t h e  r e a l n e s s  o f  a l l  t h e  e i g e n v a l u e s  ~ c a n  be  p r o v e d  i f  t h e  t e r m  
moGcX:~XS2 i s  t r a n s p o s e d  t o  t h e  l e f t  s i d e  o f  ( 5 . 9 ) .  

The v a l i d i t y  o f  t h e  p r i n c i p l e  o f  t h e  i n t e r c h a n g e  o f  s t a b i l i t y  [7]  f o r  s m a l l  v a l u e s  o f  
the gradient G c corresponding to small values of the impurity concentration co = c~/k on the 
unperturbed front, is proved in the assertion. As germanium solidifies, its thermal coeffi- 
cients X and x diminish. Typical for metals is the situation ~, < i, X* < i. For the alloy 
Pb--Sn k = 0.3, z, = 0.54, conditions (5.6) are satisfied if the tin concentration is co 
3.3. i0 -3, while for gallium-doped germanium k = 0. i, x, = 1.6, and conditions (5.8) are sat- 
isfied for co~l.4' I0 -3. 

The problem of the stability of a plane crystallization front was examined in a thermo- 
diffusion formulation in [i], where it was assumed that 

co ~ >> max  (t /2,  %,/2). (5 .  ii) 

Taking account of (5.11), the authors of [i] neglected the convective terms in the heat- 
conduction equations and, starting from the stationary equations for heat and impurity trans- 
port, obtained the stability criterion (Yo = 0): 

< 0 -- stability. (5.12) 
m,Gc ( •  + 1) - -  G I - -  •  > 0 -- instability. 

I f  t h e  c r y s t a l l i z a t i o n  f r o n t  i s  u n s t a b l e  a c c o r d i n g  t o  t h e  c r i t e r i o n  ( 5 . 1 2 ) ,  t h e n  i t s  
i n s t a b i l i t y  a s  ~ + r f o l l o w s  f rom ( 5 . 5 ) .  L e t  u s  m e n t i o n  f o u r  c a s e s  i n  w h i c h  t h e  e q u i v a l e n c e  
o f  c o n d i t i o n s  ( 5 . 5 )  and  ( 5 . 1 2 )  i s  shown s u c c e s s f u l l y  b y  i n v e s t i g a t i n g  t h e  b e h a v i o r  o f  t h e  
f u n c t i o n s  Fa and  F2 ( t h e  s t a b i l i t y  f rom c o n d i t i o n  ( 5 . 5 )  f o l l o w s  f rom t h e  s t a b i l i t y  b y  t h e  
criterion (5.12)): 
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t) Z, - - l ,  •  
2) I/3-<~Z,~l, D , > I ,  k~>l; 

4) D , ~ I ,  k2D,'~>~l. 

Characteristic for metals are the values D,~ i04 and the last condition can be consid- 
ered satisfied for k~10 -I. 

Let us note that criterion (5.12) can be obtained if the dispersion relation (5.1) is 
replaced by the approximate equation 

= - C J ~  - zT~G~s~ + moC~ ( •  + z~) - moCoZ,. (5.13) 

and the validit X of the principle of interchange of the stability is taken. In (5.13) ~m = 
~wf~+~, Sm =/m= + X*~ (Imx, Sml > 0) and Z m is obtained from Z by replacing s and ~ by s m 
and I m. 

The following assertion is valid: For ~,_~ i, X,~ 1 and for ~, < I, X,~I, Gx~G= 
each solution ~ of (5.13) is real, while for • < I, Gx < G= the stability boundary is de- 
termined by the value ~ = 0. 

Let p, 51=i, D,=/=0 (general case). If the parameter X, is replaced by P,X* in the func- 
tion F(2), then the stability conditions relative to monotonic perturbations will be deter- 
mined, as before, by using (5.5). The conditions for the equivalence of 1-4 remain valid if 
the replacement of X* by P,X* is made. 

The problem of small perturbations (2.2)-(2.4)does not contain the acceleration of 
gravity g. For absolutely incompressible media gravity does not influence the stability of 
the crystallization front. The convective instability of the crystallization process was 
studied in [8]. 

The author is grateful to V. V. Pukhnachev for constant attention to the research. 
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